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A kinematic and dynamic analysis of flows in a rotory-pulsatory apparatus has been carried out. Based on
this analysis, a method for calculating the main parameters of the apparatus with the use of minimum initial
experimental information (the head at zero transit flow rate H0 and the flow rate at zero head Q0) has been
developed.

Rotory-pulsatory (RPA) or rotory-impulse apparatuses (RIA) have found wide application in chemical, phar-
maceutical, and food engineering for production of finely dispersed emulsions and suspensions. They represent struc-
tures from coaxial cylindrical shells with openings (slots, windows), the even (or odd) of which are set in rotation. If
such a system is positioned in a liquid medium, the rotating shells will initiate the azimuthal circular motion of a liq-
uid in the intercylinder gaps and, under the action of centrifugal forces, the radial movement of the medium.

A number of investigations are devoted to the analysis of the operation of such apparatuses [1–7]. However,
we cannot agree with all the theoretical premises. For example, in [1] it is assumed without proper substantiation that
the conditions of motion in the intercylinder gap are turbulent and the calculation is made with the use of a certain
three-layer model of flow: a viscous flow in the near-wall regions of the intercylinder gap and a turbulent core be-
tween them. The radial movement of the liquid is completely ignored. In [2], the analysis of the flow in the window
of an immovable cylinder is based on the jet scheme, according to which the oppositely directed motions of the liquid
must occur along the outer boundaries of this cylinder, with which we cannot agree. Moreover, the momentum equa-
tion does not take into account the contribution of the radial component of the pressure gradient. The head flow in
intercylinder gaps, which, as a rule, is not realized in RPA, is the focus of [6]. In [3], information on the hydrody-
namics is practically absent.

A structure from three coaxial cylindrical shells, the central of which is set in rotation, can be considered as
the base element of RPA. The schematic diagram of the simplest RPA is given in Fig. 1. The main technological
function of an RPA is to attain a high homogenizing effect. Because of this, the intercylinder gaps are small
(δ D 0.15 mm), which determines a rate of shear in them of the order of 105 sec−1 or more. However, when the width
of the gaps δ decreases, there arises a tendency toward increasing the radial flow of a liquid that bypasses the inter-
cylinder gaps and, consequently, does not undergo homogenization. Indeed, even in the case of very low velocities of
the radial flow ur as compared to the velocity of the circular flow uϕ because of the significantly larger mean size of
the windows sat as compared to the width of the gap δ the radial flow rate of a nonhomogenized liquid Qr and the
total transit flow rate Q in an RPA can be comparable. Of course, there are technical means that make it possible to
decrease sat and even provide Qr → 0. However, the output of the apparatus decreases significantly in this case. In
this connection, it is important to determine the relations between the above-mentioned flow rates for each RPA,
which can be done only by way of calculation based on the analysis of the kinematics and dynamics of the flows in
the RPA. This is one of the main concerns of this work.

Thus, the following flows and the corresponding flow rates must be distinguished in an RPA:
(a) the circular (azimuthal) flow along closed circular trajectories with flow rate Qω;
(b) the circular (azimuthal) transit flow (through the RPA) with flow rate Qϕ;
(c) the radial transit flow bypassing the gaps with flow rate Qr;
(d) the resultant transit flow through the RPA with flow rate Q = Qϕ + Qr, which corresponds to the volumet-

ric output of the RPA.
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Let us consider the kinematics of the circular transit flow. Particles entrained into the interior intercylinder
slot are accelerated in it to the rotor speed and only after that can they enter the window of the rotor and move in it
to the exterior intercylinder slot. Particles can enter the window of the exterior stator only after their deceleration in
the exterior ring gap of the rotor. Because of this, the particles of the circular transit flow must traverse in their mo-
tion at least two regions of the intercylinder gaps, as shown in diagram 1 in Fig. 2, which reflects the moment when
the openings in all three cylinders are coincident. When the central cylinder rotates in the direction indicated by the
arrow, the condition of coincidence of the openings sets in after a time when the elements of the walls of the moving
cylinder a, b, and c, the successive change in the positions of which is shown in diagrams 2, 3, and 4 in Fig. 2, oc-
cupy the position shown in diagram 5 in Fig. 2. Diagram 5 is not fundamentally different from diagram 1. Because
of this the lines of the particle flow shown in diagram 5 must be identical to those in diagram 1. However, they turn
out to be noncoincident relative to the elements of the moving wall. Whereas in diagram 1 the line of the particle
flow from the window B (solid line) passed through the intercylinder gap internal relative to the element b, in dia-
gram 5 this line of flow passes exclusively through the intercylinder gap external relative to the element b. It is be-
yond reason to suggest a jump-like change in the positions of the lines of flow. It would appear reasonable that there
is a two-sided flow of particles arriving from the window B around the element b with a certain coefficient of distri-
bution of the flow rate k proportional to the number of particles flowing over the exterior of the element, which is
shown in diagrams 2, 3, and 4 in Fig. 2. In this case, the coefficient k changes from zero in scheme 1 to unity in
scheme 5 (k 2 [0, 1]). It seems plausible that k changes linearly with time, since as the time of contact of the parti-
cles with the element b increases, their velocity approaches the velocity of the element b, which is favorable to the
entry of the particles into the opening of the moving cylinder between the elements b and c. When the number of cy-
lindrical shells in the RPA and the order of their rotation change, it is necessary to refine the kinematic scheme of the
circular transit flow.

As for the regime of circular flow, its stability should be analyzed with the use of the calculation scheme for
the theoretically and experimentally evaluated case of an RPA in which the liquid is moving in the gap between co-
axial cylinders, one of which rotates. In this case, according to Fig. 1, the situation where both the exterior cylinder
and the interior shell rotate about the exterior immovable cylinder is realized in the RPA. The difference of the RPA
from the above-described cases is that there are openings in its cylinders and, consequently, a distinctly undirectional
radial flow is realized in it. As is known, radial flow is the main factor disturbing the flow in the gap between the
coaxial cylinders without openings, mainly because of the impermeability of the walls, since the compulsory radial mo-
tion caused by centrifugal forces must form a closed circuit in this case, i.e., a vortex superimposed on the main cir-
cular flow. In the RPA, the destabilizing influence of such vortices is significantly diminished because of the fairly
high "porosity" of the cylinders and, consequently, the realization of a uniquely directed radial flow rate. Because of
this, the stability conditions for a flow in circuits with impermeable walls can be extended with a certain "margin" to
the case of flow in an RPA.

Fig. 1. Schematic diagram of an RPA.
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The analysis of the stability of flow in the intercylinder gap dates back to the fundamental work of Taylor
[8], according to which the motion is always stable if the exterior cylinder rotates. Since this method takes no account
of viscosity, an additional condition for a purely viscous regime of motion is determined from the lower critical angu-
lar velocity ω∗  calculated from the empirical Reynolds relation:

 
ω∗ r2

2

ν
 


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r1

r2




 = 1900 .

In the exterior gap, the conditions of preservation of stability for a purely circular motion are less favorable. Accord-
ing to the investigations carried out by Taylor, the stability will be lost when the quantity
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Here, the parameters entering into the Taylor dependences are determined by the relations

Fig. 2. Kinematics of a circular transit flow. Figures correspond to the values
(1 − k).
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The above-described kinematic scheme of distribution of circular flows in an RPA must be supplemented with
the kinematics of the radial transit flow bypassing the gaps. The rotating interior cylinder represents a diaphragm that is
periodically open and closed for the radial flow. Because of this, from the kinematic standpoint, this is a flow through a
slot with a variable geometry. It is characterized by a sharp deformation of the flow section and a great nonuniformity of
the velocity distribution over the section, which increases because of the intense vortex formation caused by the rotation
of the central cylinder with a circular velocity of the order of 10 m/sec or more. In the absence of the transit flow rate,
these vortices will correspond to the vortices shown in Fig. 3. Thus, the transit flow in an RPA is the "pumping" of a
liquid through the system of high-intensity vortices. Since the kinetic parameters of the transit flow rate, calculated from
the formulas for the entire flow section, are small as a rule (two to three decimal orders of magnitude smaller than the
parameters of vortex motion), the "pumping" is possible only in the case of concentration of the flow in the form of
tubes of flow with a small cross section; these tubes ensure a velocity of motion which makes it possible to pass through
the system of vortices. One can assure oneself that this peculiarity of passage of the flow through a high-intensity vortex
is true, observing the final stage of emptying of the bath where a particle can pass through a vortex without being
entrained into the outflow and only moving with a velocity higher than the local velocity of the vortex particles or
moving along the trajectory far removed from the center of the vortex. Figure 4 shows the main lines of flow of circular
and radial transit flows. It is easy to calculate the number of rotations of each of the flows in the RPA by the angle
π ⁄ 2. These are 8 rotations for the first flow and 12 rotations for the second flow.

The vortex formation in the RPA causes a local decrease in the pressure at the centers of the vortices. If a
vortex is considered as rectilinear, circular, and cylindrical (induced in a nonviscous medium) the relation between its
kinematic and dynamic characteristics is determined in a cylindrical coordinate system by the dynamic equation

rω2
 = 

1
ρ

 
dp
dr

 ,

where ω = const. Integrating this equation with respect to r and denoting the pressure at the boundary of the circular
vortex (r = rbound) by pbound, we obtain the expression for the rough value of the pressure at the center of the vortex:

p0 = pbound − ρ 
rbound
2 ω2

2
 .

In the prevalent majority of cases, the motion of a mixture in the gaps of the RPA is viscous in character and
the rheological equation for the motion of a Newtonian fluid in the gap between the coaxial cylinders has the form

Fig. 3. Vortex system in an RPA.
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It is usual to take ur = 0. Numerous solutions of dynamical problems on the basis of this equation for the cases of
rotation of the external cylinder or (and) the internal cylinder are widely known; therefore, we will not consider them
here (see, for example, [9]). To take into account the influence of the windows in the cylinders, we can use the analy-
sis of the resistance of the intercar spaces of a moving train presented in [10], since this problem is completely analo-
gous to the problem considered. In [10], a formula for determining the friction stress over the generating lines of a
train in intercar portions is given:

τ = 0.019 ρ 
u

2

2
 ,

where u is the velocity of the train. The resistance force of the windows on one side of the rotating cylinder will be

P = 2πR τba ⁄ (a + l) ,

while the torque moment will be

M = PR .

The rotating central cylinder is similar, owing to the existence of windows in it, to the impeller of centrifugal
pumps. The unidirectional radial flow rate is due to the action of the centrifugal force arising as a result of the rota-
tion of the cylinder, and the radial flow in apparatuses of this type should be analyzed with the use of the Euler the-
ory of centrifugal pumps. According to this theory, the energy equation for the motion of an ideal liquid through an
opening in a rotating cylinder along the generating line of the opening is

p2int

ρg
 + 

v2int
2

2g
 = 

p1ext

ρg
 + 

v1ext
2

2g
 − 

ω2
 (r1ext

2
 − r2int

2 )
2g

 .
(1)

Here, the velocity along the generating line of the opening is denoted by v to decrease the number of indices in the
notation. The indices in the notation coincide with the indices at r according to Fig. 1 and correspond to the values
of the parameters at these distances from the center of the apparatus. In the case where the circular and radial veloci-
ties are orthogonal, the heads of the liquid at the inlet of the cylinder and at the outlet from it will be

H2int = 
p2int

ρg
 + 

v2int
2

 + ω2
r2int
2

2g
 ,   H1ext = 

p1ext

ρg
 + 

v1ext
2

 + ω2
r1ext
2

2g
 . (2)

The theoretical head Ht developed by the rotating cylinder is equal to the difference of the heads at the exit from the
cylinder window and at the entry to the window:

Ht = H1ext − H2int = 
p1ext − p2int

ρg
 + 

v1ext
2

 − v2int
2

2g
 + 

ω2
 (r1ext

2
 − r2int

2 )
2g

 . (3)

Having substitutial the expression for the pressure difference into (3), in accordance with (1) we obtain

Ht = 
ω2

 (r1ext
2

 − r2int
2 )

g
 . (4)

Since formula (4) has been derived for the case of rotation of an ideal liquid, i.e., a liquid free of internal friction, the
value of Ht corresponds most closely to the conditions of the absence of the transit flow rate (Q = 0) through the

342



RPA. However, the real head H0 will be smaller than the theoretical one also at Q = 0 because of the energy loss by
the circulation flow within the RPA according to the scheme of Fig. 3:

H0 = η0Ht , (5)

where η0 is the hydraulic efficiency of the apparatus at Q = 0. In the case Q > 0, the efficiency of the apparatus de-
creases: η < η0.

The volumetric output of the RPA corresponds to the rate of liquid flow through the windows of the rotating
cylinder

Q = 2πr1extb 
a

a + l
 v1ext , (6)

while the useful energy loss by the external movement of the liquid is determined as

N = ρgHQ , (7)

where H = H(Q).
To find v1ext and determine the head–flow-rate characteristics of the RPA, we use the Bernoulli equation for

a uniformly rotating flow channel as applied to the calculation scheme of the RPA shown in Fig. 5. The cross sections
a–a and b–b are taken as the calculation cross sections, and the plane with mark 0–0 is taken as the comparison sur-
face:

Ha + 
v1ext

2

2g
 = Hb + 

vb
2

2g
 + H0 − ∆h , (8)

where ∆h is the energy loss due to the radial movement of the transit flow. The kinetic head in the cross section b–b
can be neglected. In deriving the Bernoulli equation, allowance must be made for the fact that the circular motion of

Fig. 4. Kinematics of compacts in an RPA.

Fig. 5. Calculation scheme of an RPA.
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the liquid in the intercylinder gaps is initiated by the rotation of the central cylinder set in motion by the torque mo-
ment applied from the outside. Because of this, in (8) there is no component determining the kinetic energy of the
transit circular flow. As has already been mentioned, the total transit flow is subdivided into two branches — circular
and radial ones that then join together at the outlet from the immovable exterior cylinder (Fig. 4). As a result of the
movement of particles in the RPA, the circular transit flow necessarily changes to a radial one, and, as has been men-
tioned above, the radial transit flow is possible in the RPA only in the form of compact tubes of flow. The energy
loss by the change of the direction of the transit circular flow to the radial one ∆hϕ can be compensated for only with
the work of the centrifugal forces determined by the quantity H0 or with the differential head in the radial direction.
Since thereupon both branches of the total flow join together, the value of ∆hϕ must be equal to the energy loss in
the radial branch ∆hr:

∆hϕ = ∆hr = ∆h . (9)

The quantities ∆hϕ and ∆hr qualify as local resistances; therefore, they are represented as

∆hϕ = ζϕε 
vϕε

2

2g
 ,   ∆hr = ζrε 

vrε
2

2g
 . (10)

Here vϕε and vrε are the velocities in the corresponding compact tubes of flow, and ζϕε and ζrε are the total coeffi-
cients of local resistances. The velocities vϕε and vrε exceed significantly the mean velocities calculated by relating the
flow rates Qϕ and Qr to the total area of the flow section. The value of vϕε in a "compact" is determined by the value
of ωr1ext:

vϕε = kvωr1ext , (11)

where kv < 1. The kinetic energy of the "compact" of the transit circular flow is in proportion to the relation between
the transit and total parts of the circular flow rate:

qϕ = 
Qϕ
Qω

 = 
2Qϕ

ωr1extδb
 . (12)

With account for (11) and (12) the first relation of (10) can be written as

∆hϕ = kϕ 
2Qϕ

ωr1extδb
 
kv

2ω2
r1ext
2

2g
 , (13)

or in the form

∆hϕ = 
kϕ

vϕ

kv
2ωr1ext

 
δ

2am

 
Qϕ

2

2gS
2 , (14)

where

vϕ = 
Qϕ
S

(15)

is the velocity of the transit circular flow, averaged over the entire flow section

S = 2πr1extb 
a

a + l
 = abm (16)
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In such an event, the quantity

εϕ = √vϕkv
2ωr1ext

 
δ

2am
(17)

should be interpreted as the effective contraction coefficient of the transit circular flow, and kϕ will correspond to the
total coefficient of local resistances:

kϕ = ζϕε . (18)

Since kv
2 << 1 and vϕ << ωr1ext, it may be assumed to a first approximation that

vϕ

kv
2ωr1ext

 C 1 . (19)

Let us introduce the notation

ζϕ = 
ζϕε
εϕ

2  . (20)

Then (14) takes the form

∆hϕ = ζϕ 
Qϕ

2

2gS
 . (21)

According to the diagrams of the main flows presented in Fig. 4, the number of rotations of the transit circular flow
by the angle π ⁄ 2 is equal to 8. Assuming that the value of ζϕε

(1) of one rotation by the angle π ⁄ 2 is equal to 1.2 [11],
according to (17)–(21), we obtain

ζϕ = 
9.6
δ

2am

 . (22)

For the radial transit flow, in addition to the distinct 12 rotations by the angle π ⁄ 2, it is necessary to take
into account the local resistances which are due to the overlapping of the flow section by the rotor. Because of this,
the second formula of (10) will be represented in the form

∆hr = 




14.4 + 1

εr
2  + ζd




 

Qr
2

2gS
2
 , (23)

or

∆hr = ζr 
Qr

2

2gS
2 , (24)

where ζd is the coefficient of resistance of the diaphragm that opens and closes periodically; εr is the effective coef-
ficient of contraction of the radial transit flow.

Equation (23) takes into account the loss by the generation of the kinetic energy of a "compact" of the radial
transit component of the flow. The coefficient ζd is usually related to the kinetic energy of the flow prior to the con-
traction, which is reflected in dependence (23). Since the values of ζd change from zero to infinity with time, the flow
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rate Qr must be variable. In this case, an equation of the type (8) should be supplemented with an inertial component
and be written, with account for (9), as follows:

Hb + H0 − 




15.4

εr
2

 + ζd (t)



 
vr

2

2g
 = Ha + 

X

g
 
dvr

dt
 , (25)

where

vr = 
Qr

S
 , (26)

and X is the length of the inertial portion. For apparatuses of the type presented in Fig. 1, X C 3L. Analogously to
(25), we compose the equation for calculating the head Hd before the rotating cylinder:

Hb − 
1 + 5⋅1.2

εr
2

 
vr

2

2g
 = Hd + 

Xd

g
 
dvr

dt
 . (27)

According to the diagram of transit flows in Fig. 4, Eq. (27) takes into account five rotations of the radial "compact"
by the angle π ⁄ 2 before the entry into the window of the rotor. Here, Xd C L. The head H0 is produced by the rotat-
ing cylinder and, because of this, is not included in Eq. (27). For the time scale, it is convenient to take

τ = 
a + l

ωr1ext
(28)

and to use the dimensionless quantities

t
_
 = 

t
τ
 ,   S

_
 = 

S (t
_
)

S
 . (29)

in calculations. The latter quantity in (29) characterizes the degree of opening of the windows relative to the immov-
able cylinders. The dependence of ζd on S

_
 was approximated by the data presented in [12]:

S
_
 < 0.005                ζd = 

1.153

0.005
2.30 ,

S
_
 = 0.005 − 0.300      ζd = 

1.153

S
_

 2.30
 ,

S
_
 = 0.30 − 0.80         ζd = 10

(−3.28S
_
+2.244)

 ,

S
_

 = 0.80 − 1.00         ζd = − 4.33 log S
_
 . (30)

When the Cauchy problems were solved, the initial conditions (t
_
 = 0) adopted for Eqs. (25) and (27) corresponded to

the total overlapping of the windows of the immovable cylinders by the wall of the rotor (S
_

 = 0). In the interval t
_

2 [0, 1.0], the dependences of S
_
 on t

_
 are as follows:

S
_
 = 2t

_
   at   t

_
 2 [0, 0.5] ,   S

_
 = 2 (1 − t

_
)   at   t

_
 2 [0, 1.0] .

The value of εr must be of the same order of magnitude as εϕ. A numerical solution of the Cauchy problems has
shown that even at small X (X D 10−2 m) and very large heads
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h = H0 − (Ha − Hb) (31)

(h D 10 m) the distributions of the velocities and rarefactions (Hd − Hb) in the intervals t
_
 2 [0.05, 0.98] are practically

uniform. Because of this, the calculation can be made from the "truncated" Eq. (25) (without the last term on the
right-hand side of (25)). According to these calculations, the fluctuations of the flow rate Qr can also be neglected and
the problem of determination of Qr can be solved as a pseudostationary problem.

Having determined the structure of the expressions for ∆hϕ and ∆hr, we return to the initial equation (3)
which, with account for (31), will be written in the form

h = 
Q

2

2gS
2
 + ∆h , (32)

where the energy loss ∆h is expressed in terms of the total coefficient of resistance ζ:

∆h = ζ 
Q

2

2gS
2
 . (33)

Then the head–flow-rate characteristic of the RPA will be

Q = 4.43S √H0 − H

1 + ζ
 , (34)

where H = Ha − Hb. The value of ζ and the correspondence of (34) to the real head–flow-rate characteristics are de-
termined experimentally. By way of example, Fig. 6 compares dependence (34) to experimental data for an RPA-1,
whose parameters are presented below in Table 1. As follows from these data, the predicted square law of resistances
in the RPA is confirmed.

The next problem is derivation of expressions to determine the subdivision of the transit flow Q into the
components Qr and Qϕ as well as expressions to calculate εr. For its solution we have the following system of re-
lations:

1)  ∆h = ζ 
Q

2

2gS
2 ,

2)  ∆h = ζϕ 
Qϕ

2

2gS
2 ,

Fig. 6. Head–flow-rate characteristic of RPA-1. H, m; Q, liters/sec.
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3)  ∆h = 




ζrε

εr
2  + sζdt




 

Qr
2

2gS
2 = sζrt 

Qr
2

2gS
2 ,

4)  ∆h = 




ζrε

εr
2  + ζd (t

_
)



 
Qr

2
 (t
_
)

2gS
2  = sζrt 

Qr
2

2gS
2 ,

5)  Q = Qr + Qϕ .

(35)

The middle component of the third relation in (35) is written in a form corresponding to the quasistationary condi-
tions. Because of this, the quantity ζd(t) is replaced here by a certain averaged parameter sζdt. The middle component

TABLE 1. Parameters of Rotory-Pulsatory Apparatuses

Parameter
Values

Form of characteristics
RPA-1 RPA-2

r1ext , mm 33.53 33.85

Design

r2b, mm 30.18 30.10

δ, mm 0.50 0.17

a, mm 2.78

l, mm 2.78

L, mm 3.53 3.75

b, mm 22.40

ω, rad/sec 298

m 36

S, dm2 0.2358 0.2381

Calculation by design data

τ, msec 0.557 0.552

Qω
(1), liters/sec 0.056 0.019

Qϕ ,max , liters/sec 2.014 0.691

Ht, m 1.932 2.170

H0, m 1.37 1.38
Experimental

Q0, liters/sec 0.340 0.354

η0 0.709 0.636

Solution of equations

ζ 1292 1224

ζϕ 3843 11300

ζr 7321 2718

εϕ 0.0500 0.0291

εr 0.0467 0.0771

sζdt 150.1 96.6

ζdi 2206

qϕ 0.580 0.329

qr 0.420 0.671

v
__

ϕ 11.60 11.29

v
__

r 9.00 8.70

h
__

ϕ ,max 73.95 22.38
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of the fourth relation in (35) reflects the nonstationary character of the radial transit flow. Since the quantity ∆h does
not change with time, the changes in ζd(t

_
) and Qr

2(t
_
) must be such that the last component of the fourth relation in

(35) is constant. Thus, the equality

Qr
2
 (t
_
)

Qr
2  = 

sζrt

ζrε

εr
2  + ζd (t

_
)
 . (36)

is observed. The quantity Qr
2(t
_
) must satisfy the mean-integral equivalence condition Qr

2:

Qr
2
 = ∫ 

0

1

Qr
2
 (t
_
) dt

_
 , (37)

which leads to the integral relation

 ∫ 
0

1
sζrt

ζrε

εr
2  + ζd (t

_
)

 dt
_
 = 1 , (38)

which allows one to find the value of εr if the function ζd(t
_
) is prescribed. Relation (38) is solved by the iteration

method.
When system (35) is solved, it is assumed that the quantity ζϕ is known from (22) and the quantity ζ is

known from the experimental data. Then, according to the first, second, and fifth equations in (35), the total transit
flow in the RPA is subdivided into the circular and radial components

qϕ = 
Qϕ
Q

 = √ ζ
ζϕ

 ,   qr = 
Qr

Q
 = 1 − qϕ , (39)

and the first and third relations in (35) allow one to calculate the quantity

sζrt = 
ζ

qr
2
 .

(40)

Substituting (40) into (38), we find the value of εr and then the value of sζdt from the third relation in (35):

sζdt = sζrt − 
ζrε

εr
2  . (41)

The dynamics of changes of Qr(t
_
) in the interval t

_
 2 [0, 1.0] is determined by the expression

Qr (t
_
)

Qr
 = √ sζrt

ζε
εr

2
 + ζd (t

_
)

 ,
(42)

while the mean velocities in the "compacts" are determined by the formulas
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vϕε = 
Qϕ

Sεϕ
 ,   vrε = 

Qr

Sεr
 ;   v

_
ϕ = 

qϕ
εϕ

 ,   v
_

r = 
qr

εr
 . (43)

Equations (32) and (33) allow one to determine the limiting head hmax, at which the pressure gradient in the
intercylinder gaps remains zero in the azimuth direction:

hmax = 
1 + ζ
2g

 




Qϕ,max

qϕS





2

 , (44)

where

Qϕ,max = 
ωr1extδb

2
 m . (45)

The quantity hmax is conveniently expressed in dimensionless form:

h
_

max = 
hmax
Ht

 . (46)

As an example we present (Table 1) a summary of design, calculation, and experimental characteristics for
two modifications of a concrete RPA differing in the intercylinder gaps δ. In the table, we also present parameters cal-
culated according to the above-described calculation method. An increase in δ caused the corresponding change in the
circular flow rate Qω

(1) per intercylinder gap and an increase in the maximum possible transit flow rate Qϕ,max at which
the azimuthal pressure gradient in the gap still remains equal to zero. When Qϕ,max is compared to the maximum
value of the resultant transit flow rate Q0, detected in the experiments, it is apparent that a "gradient-free" flow occurs
in the gaps of the RPA. The hydraulic efficiency η0 is fairly high at Q = 0. The total coefficients of resistance ζ of
RPA-1 and RPA-2 were found to be close. However, the distributions of the transit flows in the modifications are sig-
nificantly different. A threefold increase in ζϕ in RPA-2 caused a decrease of approximately √ζϕ  in the circular transit
flow in it. The smaller size of the gap δ provided the greater compactness of the circular tube of flow (εϕ1 < εϕ2). At
the same time, the mean values of the velocities in the compacts characterized by the parameters v

_
ϕ and v

_
r were found

to be close. The significant difference between sζdt and its mean-integral value ζdi is noteworthy, which underlines
the necessity of using Eq. (38), which determines the value of sζdt along with εr. Comparison of qϕ of the RPA
modifications allows the conclusion that RPA-1 is more preferable from the standpoint of increasing the portion of the
medium flowing through the intercylinder gaps.

Thus, the method proposed allows one to determine the hydrodynamics of the internal processes in an RPA
and calculate the parameter qϕ, which is a diagnostic variable in terms of technology.

NOTATION

a, width of the window, m; b, height of the cylinders, m; k, coefficient; H, head, m; ∆h, head loss, m; Q,
volumetric flow rate, m3/sec; q, relation between the flow rates; g, free-fall acceleration, m/sec2; L, thickness of the
cylindrical shells, m; l, interslot distance, m; m, number of slots in the cylinders; M, torque moment, N⋅m; N, power,
W; p, pressure, Pa; r, radius, m; R, central radius of the rotating cylinder, m; t, time, sec; u, local velocity, m/sec; v,
mean velocity, m/sec; δ, width of the intercylinder gap, m; µ, dynamic coefficient of viscosity, Pa⋅sec; ν, kinematic
coefficient of viscosity, m2/sec; η, hydraulic efficiency; ϕ, angle in the cylindrical coordinate system, rad; ϕi, velocity
coefficient; ζ, coefficient of hydraulic resistances; ω, angular velocity, rad/sec; ρ, density, kg/m3; τ, friction stress, Pa.
Subscripts and superscripts: r and ϕ, component of the quantity in the direction r and ϕ; 1, smaller radius of the gap;
2, larger radius of the gap; 1 and 2, as the second indices denote the parameters of RPA-1 or RPA-2, respectively; a
and b, in the cross sections a and b; bound, at the boundary; v, velocity; ext, external; int, internal; 0, at the center,
at zero value; d, baffle (diaphragm); ε, with allowance for the contraction of the flow; ω, under the action of rotation
of the rotor; i, integral; *, critical values. t, theoretical; s t, symbol of averaging; max, maximum.
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